Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure.
نویسندگان
چکیده
The therapeutic efficacy of monoclonal antibodies (MAbs), bound to radionuclides, chemotherapeutic agents, toxins, growth factors, or effector antibodies, depends upon their ability to reach their target in vivo in adequate quantities. Despite the high vascular permeability and interstitial transport coefficients in tumor tissue compared to several normal tissues, MAbs and their fragments do not distribute homogeneously in a tumor. Heterogeneity of tumor-associated antigen expression alone cannot explain this maldistribution of MAbs in tumors. We propose that in addition to the heterogeneous blood perfusion, hindered diffusion in the interstitium, and extravascular binding of MAbs, elevated interstitial pressure is responsible for the poor penetration of MAbs into tumors. Elevated interstitial pressure principally reduces the driving force for extravasation of fluid and macromolecules in tumors, and also leads to an experimentally verifiable, radially outward convection which opposes the inward diffusion. We present here mathematical models for transport of fluid and macromolecules in a tumor. To illustrate the significance of elevated interstitial pressure, these models are used to describe the interstitial pressure, interstitial fluid velocity, and concentration of nonbinding macromolecules as a function of radial position in a uniformly perfused tumor. The key result of these models is that the filtration of fluid from blood vessels in a uniformly perfused tumor is (a) spatially heterogeneous, (b) a result of elevated interstitial pressure, and (c) sufficient to explain the heterogeneous distribution of macromolecules in tumors. Nonuniform blood flow, and extravascular binding would enhance this heterogeneity in the solute distribution considerably. The results of the models also agree with the following experimental data: (a) tumor interstitial pressure is low in the periphery and it increases toward the center of the tumor; (b) the radially outward fluid velocity at the tumor periphery predicted by the model is of the same order of magnitude as measured in tissue-isolated tumors; and (c) immediately after bolus injection, the concentration of macromolecules is higher in the periphery than in the center; however, at later time periods the peripheral concentration is lower than in the center. These results have significant implications not only for MAbs and their fragments, but for other biologically useful macromolecules (e.g., cytokines) produced by genetic engineering for cancer diagnosis and treatment.
منابع مشابه
Mechanisms of Heterogeneous Distribution of Monoclonal Antibodies and Other Macromolecules in Tumors: Significance of Elevated Interstitial Pressure1
The therapeutic efficacy of monoclonal antibodies (MAbs), bound to radionuclides, chemotherapeutic agents, toxins, growth factors, or effec tor antibodies, depends upon their ability to reach their target in vivo in adequate quantities. Despite the high vascular permeability and intersti tial transport coefficients in tumor tissue compared to several normal tissues, MAbs and their fragments do ...
متن کاملPhysiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors.
The efficacy in cancer treatment of monoclonal antibodies or other macromolecules bound to radionuclides, chemotherapeutic agents, toxins, enzymes, growth factors, or effector antibodies has been limited by their inability to reach their target in vivo in adequate quantities. Heterogeneity of tumor-associated antigen expression alone has failed to explain the nonuniform uptake of antibodies. As...
متن کاملPhysiological Barriers to Delivery of Monoclonal Antibodies and Other Macromolecules in Tumors1
The efficacy in cancer treatment of monoclonal antibodies or other macromolecules bound to radionuclides, chemotherapeutic agents, toxins, enzymes, growth factors, or effector antibodies has been limited by their inability to reach their target in vivo in adequate quantities. Heterogeneity of tumor-associated antigen expression alone has failed to explain the nonuniform uptake of antibodies. As...
متن کاملCollagenase increases the transcapillary pressure gradient and improves the uptake and distribution of monoclonal antibodies in human osteosarcoma xenografts.
Cancer therapy based on tumor-selective macromolecules may fail due to the elevated interstitial fluid pressure (IFP) that reduces the transvascular and interstitial convection in solid tumors. Modulation of the tumor extracellular matrix (ECM) may reduce IFP and enhance transvascular filtration and interstitial transport of macromolecules. We therefore measured the effect of the ECM-degrading ...
متن کاملIncreased plasma colloid osmotic pressure facilitates the uptake of therapeutic macromolecules in a xenograft tumor model.
Elevated tumor interstitial fluid pressure (TIFP) is a characteristic of most solid tumors. Clinically, TIFP may hamper the uptake of chemotherapeutic drugs into the tumor tissue reducing their therapeutic efficacy. In this study, a means of modulating TIFP to increase the flux of macromolecules into tumor tissue is presented, which is based on the rationale that elevated plasma colloid osmotic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 48 24 Pt 1 شماره
صفحات -
تاریخ انتشار 1988